

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Inflation-era High Energy Physics and neutrino masses via CMB polarization measurements with the South Pole Telescope

John Carlstrom*, Clarence Chang*, Aaron Datesman, Valentyn Novosad, John Pearson, Gensheng Wang, Volodymyr Yefremenko (Argonne)

Critical component: Argonne TES Detector Development Project featuring HEP, MSD, and CNM.

COLLABORATORS:

South Pole Telescope collaboration including key people at: Kavli Institute for Cosmological Physics at the University of Chicago, U.C.Berkeley & LBL, U.Colorado, Case Western & McGill University

*joint Argonne/U.Chicago

HEP provides enabling technology for frontier research - excellent synergy.

TECHNOLOGY

- Superconducting Transition-Edge Sensor (TES) Detectors
- Argonne TES
 Development Project
- Seeded by LDRD (ANL)

PLATFORM

- South Pole Telescope.
 Cutting edge instrument & strong collaboration
- PI: John Carlstrom

HEP Science

Probing the Cosmic Frontier

We now have a model that describes the evolution of our Universe from a hot and dense state.

The model has some unusual features - new physics - <u>Dark Matter</u>, <u>Dark Energy</u>, and starts with a period of <u>Inflation</u>.

Most of the model has been learned from measurements of the cosmic microwave background (CMB).

Discovery of the Cosmic Microwave Background

"smoking gun" evidence for the <u>Hot Big Bang</u>

Penzias & Wilson 1965

Received 1978 Nobel Prize

Enormous impact on Cosmology

Structure in background discovered in 1992

COBE Satellite

Smooth to a part in 10⁵

Structure in background discovered in 1992

COBE Satellite

Smooth to a part in 10⁵

COBE Satellite

und discovered in 1992

Superhorizon features

Quantum fuzz inflated to the
largest structures in the universe

Smooth to a part in 10⁵

COBE Satellite

und dis

COBE team leaders

John Mather & George Smoot received 2006 Nobel Prize

Superhorizon features

Quantum fuzz inflated to the largest structures in the universe

Smooth to a part in 10⁵

Incredible progress

Line is fit to a flat Λ CDM cosmology model with just six parameters: $\Omega_b h^2$, $\Omega_m h^2$, A_s , τ , n_s , Ω_{Λ}

What's next? "B-mode" CMB polarization to probe Inflation.

The data from SPTpol will constrain the masses of the neutrinos and set (or limit) the energy scale of Inflation.

Komatsu et al., arXiv:1001:4538; Larson et al., arXiv:1001.4635

Spectra generated with WMAP7 parameters using CAMB, Lewis and Challinor

CMB measurements should be able to achieve $\sigma(\sum m_v) = 0.05eV$, comparable to Δm measured by neutrino oscillations.

Discovery of Polarization of the Cosmic Background in 2002

Closing in on inflation

see Brown et al., arXiv:0906.1003 & Chiang et al., arXiv:0906.1181

Need more sensitivity! Need scalable, background limited, detectors.

Bolometry: A Broadly Applicable, Ultra-Sensitive Thermal Detection

Demonstrated Competencies Required for Success

Cosmic Frontier of DOE/HEP:

- Test inflation, probe physics at the GUT scale.
- Determine masses of the neutrinos.

World-class Science

Science ____

Materials Science

Low-Noise Superconducting Electronics

Advanced Microfabrication

LDRD developed Argonne SPTpol TES Detector

Mo/Au proximity effect 500mK T_C bilayer TES

Focal Plane Array Layout

